システムとデータの両面にスポットを当て、データ分析基盤の整備/運用/活用の指針をまとめた入門書。データ分析の中心にある「データ分析基盤」を取り巻く環境は、大きく変わりました。機械学習/ディープラーニング、マーケティング、需給予測、不正検知を筆頭にデータ利用が多角化し、データ分析基盤に求められる役割も多様化が進んでいます。本書では、データ分析基盤の「今」に焦点を合わせ、基本用語の整理から歴史、クラウドをはじめとしたインフラ、主要な技術スタック、システムモデル、データドリブンのための可視化&測定術まで徹底解説。合わせて、長期視点に立ったユーザー中心の運用に欠かせない「セルフサービス」「SSoT」に基づいたルール作り、それらを実現するためのゾーン/タグ管理、メタデータ管理、データの品質管理も平易にまとめました。今回の改訂では新たに第0章「[速習]データ分析基盤と周辺知識」&第9章「[事例で考える]データ分析基盤のアーキテクチャ設計」を収録。より基本に忠実にかつ実践への道しるべとなる入門書を目指し解説を強化しました。広くデータ分析基盤に関わるエンジニア/ユーザーの方々へ、ユーザーが自然と集まり、データ活用を促進するシステムの実現のために、実践で活かせる考え方をお届けします。